久久r热视频,国产午夜精品一区二区三区视频,亚洲精品自拍偷拍,欧美日韩精品二区

您的位置:首頁技術文章
文章詳情頁

SparkSQL使用IDEA快速入門DataFrame與DataSet的完美教程

瀏覽:143日期:2024-07-12 15:04:25
目錄1.使用IDEA開發Spark SQL1.1創建DataFrame/DataSet1.1.1指定列名添加Schema1.1.2StructType指定Schema1.1.3反射推斷Schema1.使用IDEA開發Spark SQL1.1創建DataFrame/DataSet

1、指定列名添加Schema

2、通過StrucType指定Schema

3、編寫樣例類,利用反射機制推斷Schema

1.1.1指定列名添加Schema

//導包import org.apache.spark.rdd.RDDimport org.apache.spark.sql.SparkSession//代碼// 1.創建SparkSession val spark = SparkSession.builder().master('local[*]').appName('sql').getOrCreate()// 2.使用spark 獲取sparkContext 上下文對象 val sc = spark.sparkContext// 3.使用SparkContext 讀取文件并按照空格切分 返回RDD val rowRDD: RDD[(Int, String, Int)] = sc.textFile('./data/person.txt').map(_.split(' ')).map(x=>(x(0).toInt,x(1),x(2).toInt))// 4.導入隱式類 import spark.implicits._//5.將RDD 轉換為DataFrame 指定元數據信息 val dataFrame = rowRDD.toDF('id','name','age')//6.數據展示 dataFrame.show()1.1.2StructType指定Schema

//導包import org.apache.spark.sql.{Row, SparkSession}import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}//編寫代碼//1.實例SparkSession val spark = SparkSession.builder().master('local[*]').appName('sql').getOrCreate()//2.根據SparkSession獲取SparkContext 上下文對象 val sc = spark.sparkContext// 3.使用SparkContext讀取文件并按照空開切分并返回元組 val rowRDD = sc.textFile('./data/person.txt').map(_.split(' ')).map(x=>Row(x(0).toInt,x(1),x(2).toInt))// 4.導入隱式類 import spark.implicits._//5.使用StructType 添加元數據信息 val schema = StructType(List( StructField('id', IntegerType, true), StructField('name', StringType, true), StructField('age', IntegerType, true) ))//6.將數據與元數據進行拼接 返回一個DataFrame val dataDF = spark.createDataFrame(rowRDD,schema)//7.數據展示 dataDF.show()1.1.3反射推斷Schema

//導包import org.apache.spark.rdd.RDDimport org.apache.spark.sql.SparkSession//定義單例對象 case class Person(Id:Int,name:String,age:Int)//編寫代碼//1.實例sparkSession val spark = SparkSession.builder().master('local[*]').appName('sql').getOrCreate()//2.通過sparkSession獲取sparkContext 上下文對象 val sc = spark.sparkContext//3.通過sparkContext 讀取文件并按照空格切分 將每一個數據保存到person中 val rowRDD: RDD[Person] = sc.textFile('./data/person.txt').map(_.split(' ')).map(x=>Person(x(0).toInt,x(1),x(2).toInt))// 4.導入隱式類 import spark.implicits._//5.將rowRDD轉換為dataFrame val dataFrame = rowRDD.toDF() //6.數據展示 dataFrame.show()

到此這篇關于SparkSQL使用IDEA快速入門DataFrame與DataSet的文章就介紹到這了,更多相關SparkSQL快速入門內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: IDEA
相關文章:
主站蜘蛛池模板: 亳州市| 迭部县| 揭阳市| 宝山区| 故城县| 正定县| 堆龙德庆县| 昭苏县| 涞源县| 崇州市| 惠安县| 原平市| 浪卡子县| 孙吴县| 靖安县| 时尚| 福泉市| 沙雅县| 吕梁市| 陇南市| 新宁县| 峡江县| 凭祥市| 宣汉县| 烟台市| 五家渠市| 油尖旺区| 顺平县| 桓台县| 大洼县| 镇康县| 陵川县| 安岳县| 壶关县| 安乡县| 凌云县| 金堂县| 大英县| 芜湖县| 哈尔滨市| 内乡县|